Letters to the Editor

1 H, 13 C and 15 N resonance assignments of a Bcl-x_L/Bad peptide complex

DOI 10.1007/s10858-005-7957-1

The Bcl-2 family of proteins has been shown to be an important modulator of mitochondrial membrane integrity and is thus a key regulator of the apoptotic process. Peptides derived from the BH3 domains of pro-apoptotic Bcl-2 family members can bind to anti-apoptotic family members such as Bcl-x_L and modulate Bcl-2 regulated apoptotic pathways in living cells. The structures of Bcl-x_L/peptide complexes (Sattler et al., 1997; Petros et al., 2000) have led to a better understanding of apoptosis on the molecular level. These data are currently being used to aid in the discovery of small molecule inhibitors. Three-dimensional heteronuclear NMR experiments using uniformly ¹⁵N-labeled, ¹⁵N, ¹³C-labeled, or uniformly ¹⁵N, ¹³C-labeled, 75% ²H samples were used to obtain ¹H, ¹³C, and ¹⁵N assignments of Bcl-x_L complexed to a 25 residue BH3 Bad peptide. Assignments for ~95% of the backbone and sidechain resonances of Bcl-x_L were obtained and have been deposited in the BioMagResBank (accession number: 6578). References: Petros et al. (2000) *Protein Sci.*, **9**, 2528–2534; Sattler et al. (1997) *Science*, **275**, 983–986.

Andrew M. Petros^a, Stephen W. Fesik^a & Edward T. Olejniczak^{a,*}

^aGlobal Pharmaceutical Discovery Division, Abbott Laboratories, 100 Abbott Park Rd., R46Y, AP10, Abbott Park, IL, 60064-6098, USA

*To whom correspondence should be addressed. E-mail: Edward.Olejniczak@abbott.com Supplementary material to this paper is available in electronic format at http://dx.dio.org/10.1007/s10858-005-7957-1.

NMR assignment of the holo-ACP from malaria parasite *Plasmodium falciparum* DOI 10.1007/s10858-005-7059-0

Acyl carrier proteins play a key role in fatty acid biosynthesis. The acyl carrier protein of *Plasmodium falciparum* (*Pf*ACP) is a potential target for design of antimalarials. Our aim is to determine the solution structure of *Pf*ACP and to study its interaction with other proteins in this pathway. *Pf*ACP exhibits a 51.9, 48.8 and 22.6% sequence identity to *E. coli*, *B. subtilis* and *M. tuberculosis* ACP's, respectively. ¹³C/¹⁵N and ¹⁵N-labeled proteins were prepared using modifications that enabled the purification of isotopically enriched holo-*Pf*ACP, i.e., the biosynthetically derived 4'-phosphopantetheine group (4'-PP) was also isotopically enriched. Here we report the backbone and side-chain assignments for ¹H, ¹³C and ¹⁵N nuclei (except C') of the polypeptide and 4'-PP that were obtained using 2D and 3D heteronuclear NMR experiments (Sattler et al., 1999). CSI and NOE data has shown that the protein is predominantly α -helical in secondary structure. Chemical shift and *J*-coupling data have been deposited (BMRB # 6516). Reference: Sattler et al. (1999) *Prog. NMR Spectrosc.*, **34**, 93–158.

Alok Kumar Sharma^a, Shailendra Kumar Sharma^a, Namita Surolia^b & Siddhartha P. Sarma^{a,*} ^a*Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560 012, India* ^b*Molecular Biology and Genetics Unit, JNCASR, Jakkur, Bangalore, 560 064, India* *To whom correspondence should be addressed. E-mail: sidd@mbu.iisc.ernet.in **Supplementary material** to this paper is available in electronic format at http://dx.dio.org/10.1007/s10858-005-7059-0.